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Notes on the statements of Class Field Theory and the development and generalizations of
certain concepts.

1. CLASS FIELD THEORY OVER Q

To begin we need to add some standard conventions. We let Q,,, = Q(&,,) where m is a positive
integer and m # 2a for a an odd integer. This is simply to avoid having to add different cases
since Q4 = Q. Here is the first major theorem to help understand abelian extensions of Q.

Theorem 1.1. (Kronecker-Weber) Every abelian extension of the rational numbers Q is contained
in a cyclotomic extension.

Proof. Maybe m]

With this tool, the study of ALL abelian extensions of Q has been reduced to the study of cy-
clotomic extensions. This becomes very helpful for us since the Galois group of any cyclotomic
extension is well known.

Definition 1.2. Let L be an abelian extension of Q, then L c Q,, for some m by the theorem
above, we call any such m a defining modulus of L.

Notice there is no statement of uniqueness of defining moduli of L, and for good reason.

Example 1.3. Let L = Q(\/g). Then L € Qs € Q15 € Q. So 5,10, 20 are all defining moduli
for L.

We make the distinction of the smallest such defining modulus by calling it the conductor of
L, denoted f. By definition, Q,, has conductor fq,, = m. We have the following theorem which
gives the formula for the conductor of a quadratic extension:

Theorem 1.4. Let L = Q(Vd) for squarefree d. Then

fi = |d|] ifd=1mod4
“7V4ad| ifd = 2,3 mod 4.

A natural question that comes to mind is: does the conductor have any relation to the dis-
criminant of a number field? The theorem above shows that (up to absolute value) the con-
ductor of a nontrivial quadratic extension takes the same value as the discriminant. However,
in the cyclotomic field cases, we see they do not have to be equal all the time. After all, given
L = Q(¢{n+¢,h) the conductor is well known to be m as well. Pushing forward with conductors,
we see
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Theorem 1.5. If m is a defining modulus of L then f1, | m.

Proof. We know that for positive integers m; and m; we know Qu; N Qm, = Qged(mi,m,)- BY
definition L € Qy, and L C Qy, so it must be in the intersection LQgcq(f,,m)- The conductor is
the smallest defining modulus so d = ged( f1., m) cannot be smaller than f; and also cannot be
larger than L (since it is a divisor). We conclude that

Q4 = Qf, meaning Qy, C Qp

which only occurs if f; | m.
O

For simpler notation, we let C,, = (Z/mZ)* be the multiplicative group of integers (mod
m) which are relatively prime to m. From Galois theory, we know for any defining modulus
m, of L, we have Gal(Q,,/Q) = Cy,. So L is the fixed field for some subgroup of C,,, which we
will call I, ,,. This leads to the discussion of Artin’s Law of Reciprocity

Theorem 1.6. (Artin’s Law of Reciprocity) If L is an abelian extension of Q with defining modulus
m, then the following sequence is exact

1—-I,m— Cy — Gal(L/Q) — 1.

where the map (L/ ) : C, — Gal(L/Q) is the restriction of any automoprhism { +— {? for any
aeCyutolL.

Proof. As discussed previously, there is a natural embedding of I, ,, into C, since the very def-
inition of Iy, ,, comes from being a subgroup. Now consider the Artin Symbol map (L/). This
map is clearly surjective since Gal(L/Q) is isomorphic to Iy, 5. In fact, the kernel of this map
is exactly the set of a € Cy, for which ¢ +— ¢? acts trivially on L. But to meet this condition is
equivalent to saying that this automorphism is part of the subgroup of Cy, for which L is the
fixed field. We conclude ker(L/) = I, ,, creating a short exact sequence. O

A nice observation from this theorem is that the Galois group Gal(L/Q) is isomorphic to
Cm/IL.m- We will soon generalize these notions in the general setting. Assuming some knowl-
edge of Algebraic Number Theory, we move to the following theorem:

Theorem 1.7. (Conductor - Ramification Theorem) If L is an abelian extension of Q, then p ram-
ifiesin Lifand only if p | fL.

Teasing the reader with the idea that the conductor should naturally be related to the dis-
criminant. After all, there is already a theorem about ramified primes in a general number
field. That is, a prime is ramified if and only if it divides the discriminant.

Example 1.8. Continuing with Example 1.3, we know f, = 5, and the only prime which ram-
ifiesis 5.

We finally arrive at the relationship between these two quantities that we have been looking
at. First, we define a character (in the representation theory sense for readers who have some
background knowledge.)

Definition 1.9. A character y is a morphism y : C,, — C*. We write C,, to denote the set of
all characters on Cy,.

Definition 1.10. A positive integer c is a defining modulus of y € C,, if a = 1 mod c implies
x(a)=1.



CLASS FIELD THEORY - THE BASICS 3

We adopt the same notation as before: the conductor of a character is the smallest defining
modulus of that character. Furthermore, for m a defining modulus of L we denote the character
group of L to be the set

Xpm={x €Cn:x(h)=1forallh € I ,}.
This leads to the following:

Theorem 1.11. (Conductor-Discriminant Formula) Let m be a defining modulus of L. Then

Jo=lem{fy : ¥ € Xpm}
and

|disc(K)| = ]_[ Ty

XGXL,m

Example 1.12. Let L = Q(V/5,)V-3). We want to show |disc(L)| = 5% - 3% and f; = 5- 3. By
Theorem 1.4 we have fq V5 =5 and fQ( v =3 The following diagram follows

Qis
T T
Qs Qs

Q(V/3,V-3)
- ~.
Q(V5) Q(V=-3)

\Q/

We know Gal(Qs/Q) = Cs and Gal(Q3/Q) = C; which are both cyclic. Let a; be the generator
of Cs and a; be the generator of Cs. Since Q;5 = Qs - Q3 we have

Gal(Q15/Q) = Gal(Qs/Q) x Gal(Q3/Q) = (a1) X (az).

Defining characters on {(a;) X {a,) comes down to realizing the order of both generators. We
want y; and y; to be characters (i.e. morphisms into C.) In order to do this, we need a; to map
to an element with order 4 and a, to map to an element with order 2. Thus, the options for a
generic character y are

x(a1) =1lori, y(a) = £1.
So we define y;1(a;) =i, y1(az) = 1 and y2(a;) =1, y2(az) = —1 so that the character group of
Ci5 is given by
(x1) X {x2)

Now we look into the relative Galois groups. Considering Q; = Q(V-3) then Gal(Q3/Q(V=3)) =
{1}. We also know Qs is a degree 4 extension over Q. So Gal(Qs/Q(V5)) must be an index 2
subgroup since the two fields are not equal. We get Gal(Qs/Q(V/5)) = <af>. Putting everything
together we can compute the character group

Xras = (x1) X (x2)-
To continue further in this example, we need a little extra machinery.

Proposition 1. The defining moduli of y € C,, are precisely the multiples of Ir
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We omit the proof for the sake of demonstrating this example. Since 5 is a defining modulus
for 7 then f,, = 1 or 5. But 1 is definitely not a defining modulus of 7 so it must be the case
that f,, = 5. Similarly, 3 is a defining modulus for y, we get f,, = 3.

To find a modulus for )(f X2 we notice that

){1(611)2 =-1and )(2(612) =-1.

Thus, the condition requiring such a ¢ where a = 1 mod c implies )(f x2(a) = 1is equivalent
toc = 1 mod 5 and mod 3. By the Chinese Remainder Theorem, this is equivalent to ¢ =
1 mod 15.s0 15 is a defining modulus. By the previous proposition, f)(% v, = 1,3,5,15. But by the
requirements above, one can reason that it must be 15. Thus, by the Conductor-Discriminant
Formula, |disc(L)| =1-3-5-15=32-5%and f; = 3 - 5. Notice the added 1 when computing
the discriminant. This takes into account the trivial character which sends everything to 1. This
completes the example.

Example 1.13. We will show that for L = Q(V2, V5) we have |disc(L)| = 1600 and f; = 40.

Theorem 1.14. (Decomposition Theorem) Let m be a defining modulus of L. If p 1 m then the
order of pIp m in Cp /I m is f, the residue class degree of p.

This makes sense considering if p f m then p is unramified in L. Why is this so interesting?
Well if we let m = f; and we know efg = n = [L : Q] then we can make statements about
not only unramified primes but those which split completely in Galois extensions of Q. We
define Spl(L) to be the set of all primes that split completely in L. Then p € Spl(L) if and only
if p { fr and p € I 5, which is equivalent to p being congruent to integers mod f;, which are
relatively prime. This is a finite set, so p € Spl(L) can be given by a finite number of congruence
conditions.

Definition 1.15. If p is an odd prime, a € Z, and p t a the Legendre Symbol (%) is given by

-1 if x? = a mod p has no solution.

(g) _ {1 if x> = a mod p has a solution
b

and if b is an odd positive integer where b = p{' - - - p;g the Jacobi Symbol is given by

56 G

In the coming section we will being to get a notion of this in the general case, for now, we
move back to the previous Example 1.12 to see how we can turn p € Spl(L) into a set of con-
gruences.

Example 1.16. Let L = Q(+/5, V-3) as before. Then we have the isomorphism
Gal(Q15/Q) = (a1) X (a2)

where a1, a, are the generators for (Z/5Z)* and (Z/3Z)* respectively. If we pick explicit gener-
ators, say 3 mod 5 and 2 mod 3 Then

Gal(Qi15/Q) = (3 mod 5) x (2 mod 3).
Using the Chinese Remainder Theorem, we arrive at the stunning result
Gal(Qis5/L) = (3* mod 5) x (1 mod 3)
= (4 mod 15).

So primes that split completely in L are EXACTLY those that are 4 or 1 mod 15.
Proof. See [1, p. 123]. m|
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2. GLOBAL CLASS FIELD THEORY

It is officially the time to begin generalizing the ideas over Q to an arbitrary ground field. We
immediately run into the problem that the Kroncker-Weber Theorem does not hold when the
ground field is not Q. To rectify this we will construct a field that holds all the "nice” properties
we want to hold from before. We first generalize a defining modulus.

Definition 2.1. When o is a totally real embedding of K into C we associate a formal symbol
Po to denote a real infinite K—prime.

Definition 2.2. A modulus of K (number field), denoted m is a formal product of an ideal in
Ok and a set of real infinite primes K—primes. So

m = my - some infinite K — primes.
where mg C Okg.

Let Ay, be the set of all fractional ideals a € A = Ak such that unique factorization of a and
m into K—primes contain no K—-primes in common. In essence, we are demanding that a and
m are relatively prime as fractional ideals in Ok. To generalize the notion of congruence we
need to understand the set A,,. We start with the following Proposition.

Proposition 2. Let K* = K — {0}. Ifa € K, let (@) be the principal ideal aOx. If (a) € Ay, then
a = § wherea,b € Og AND (a), (b) € Ap,!

This result is not a triviality at all and the proof must be handled with some care.
Proof. m]
With this Proposition, we can extend the notion of congruence to an arbitrary ground field.

Definition 2.3. Let (a) € Ay,. Then a = 1 mod m means a = b mod my where ¢ = a/b are as
above and o(a) > 0 for each infinite K—prime p, occuring in m.
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