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Notes on the statements of Class Field Theory and the development and generalizations of
certain concepts.

1. Class Field Theory over Q

To beginweneed to add some standard conventions. We letQ𝑚 = Q(𝜁𝑚)where𝑚 is a positive
integer and 𝑚 ≠ 2𝑎 for 𝑎 an odd integer. This is simply to avoid having to add different cases
since Q2𝑎 = Q𝑎 . Here is the first major theorem to help understand abelian extensions of Q.
Theorem 1.1. (Kronecker-Weber) Every abelian extension of the rational numbersQ is contained
in a cyclotomic extension.

Proof. Maybe □

With this tool, the study of ALL abelian extensions of Q has been reduced to the study of cy-
clotomic extensions. This becomes very helpful for us since the Galois group of any cyclotomic
extension is well known.
Definition 1.2. Let 𝐿 be an abelian extension of Q, then 𝐿 ⊂ Q𝑚 for some 𝑚 by the theorem
above, we call any such𝑚 a defining modulus of 𝐿.
Notice there is no statement of uniqueness of defining moduli of 𝐿, and for good reason.

Example 1.3. Let 𝐿 = Q(
√
5). Then 𝐿 ⊂ Q5 ⊂ Q15 ⊂ Q20. So 5, 10, 20 are all defining moduli

for 𝐿.
Wemake the distinction of the smallest such defining modulus by calling it the conductor of

𝐿, denoted 𝑓𝐿. By definition,Q𝑚 has conductor 𝑓Q𝑚 = 𝑚.We have the following theoremwhich
gives the formula for the conductor of a quadratic extension:

Theorem 1.4. Let 𝐿 = Q(
√
𝑑) for squarefree 𝑑. Then

𝑓𝐿 =

{
|𝑑 | if 𝑑 ≡ 1 mod 4
|4𝑑 | if 𝑑 ≡ 2, 3 mod 4.

A natural question that comes to mind is: does the conductor have any relation to the dis-
criminant of a number field? The theorem above shows that (up to absolute value) the con-
ductor of a nontrivial quadratic extension takes the same value as the discriminant. However,
in the cyclotomic field cases, we see they do not have to be equal all the time. After all, given
𝐿 = Q(𝜁𝑚 +𝜁−1𝑚 ) the conductor is well known to be𝑚 as well. Pushing forward with conductors,
we see
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Theorem 1.5. If𝑚 is a defining modulus of 𝐿 then 𝑓𝐿 | 𝑚.

Proof. We know that for positive integers 𝑚1 and 𝑚2 we know Q𝑚1 ∩ Q𝑚2 = Qgcd(𝑚1,𝑚2) . By
definition 𝐿 ⊂ Q𝑓𝐿 and 𝐿 ⊂ Q𝑚 so it must be in the intersection 𝐿Qgcd(𝑓𝐿 ,𝑚) . The conductor is
the smallest defining modulus so 𝑑 = gcd(𝑓𝐿,𝑚) cannot be smaller than 𝑓𝐿 and also cannot be
larger than 𝐿 (since it is a divisor). We conclude that

Q𝑑 = Q𝑓𝐿 meaning Q𝑓𝐿 ⊂ Q𝑚

which only occurs if 𝑓𝐿 | 𝑚.

□

For simpler notation, we let 𝐶𝑚 = (Z/𝑚Z)× be the multiplicative group of integers (mod
𝑚) which are relatively prime to 𝑚. From Galois theory, we know for any defining modulus
𝑚, of 𝐿, we have Gal(Q𝑚/Q) = 𝐶𝑚. So 𝐿 is the fixed field for some subgroup of 𝐶𝑚 which we
will call 𝐼𝐿,𝑚. This leads to the discussion of Artin’s Law of Reciprocity

Theorem 1.6. (Artin’s Law of Reciprocity) If 𝐿 is an abelian extension ofQwith definingmodulus
𝑚, then the following sequence is exact

1 → 𝐼𝐿,𝑚 ↩→ 𝐶𝑚 → Gal(𝐿/Q) → 1.

where the map (𝐿/ ) : 𝐶𝑚 → Gal(𝐿/Q) is the restriction of any automoprhism 𝜁 ↦→ 𝜁𝑎 for any
𝑎 ∈ 𝐶𝑚 to 𝐿.

Proof. As discussed previously, there is a natural embedding of 𝐼𝐿,𝑚 into 𝐶𝑚 since the very def-
inition of 𝐼𝐿,𝑚 comes from being a subgroup. Now consider the Artin Symbol map (𝐿/). This
map is clearly surjective since Gal(𝐿/Q) is isomorphic to 𝐼𝐿,𝑚. In fact, the kernel of this map
is exactly the set of 𝑎 ∈ 𝐶𝑚 for which 𝜁 ↦→ 𝜁𝑎 acts trivially on 𝐿. But to meet this condition is
equivalent to saying that this automorphism is part of the subgroup of 𝐶𝑚 for which 𝐿 is the
fixed field. We conclude ker(𝐿/) = 𝐼𝐿,𝑚 creating a short exact sequence. □

A nice observation from this theorem is that the Galois group Gal(𝐿/Q) is isomorphic to
𝐶𝑚/𝐼𝐿,𝑚.We will soon generalize these notions in the general setting. Assuming some knowl-
edge of Algebraic Number Theory, we move to the following theorem:

Theorem 1.7. (Conductor - Ramification Theorem) If 𝐿 is an abelian extension ofQ, then 𝑝 ram-
ifies in 𝐿 if and only if 𝑝 | 𝑓𝐿.

Teasing the reader with the idea that the conductor should naturally be related to the dis-
criminant. After all, there is already a theorem about ramified primes in a general number
field. That is, a prime is ramified if and only if it divides the discriminant.

Example 1.8. Continuing with Example 1.3, we know 𝑓𝐿 = 5, and the only prime which ram-
ifies is 5.

We finally arrive at the relationship between these two quantities that we have been looking
at. First, we define a character (in the representation theory sense for readers who have some
background knowledge.)

Definition 1.9. A character 𝜒 is a morphism 𝜒 : 𝐶𝑚 → C∗.We write 𝐶𝑚 to denote the set of
all characters on 𝐶𝑚.

Definition 1.10. A positive integer 𝑐 is a defining modulus of 𝜒 ∈ 𝐶𝑚 if 𝑎 ≡ 1 mod 𝑐 implies
𝜒(𝑎) = 1.
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We adopt the same notation as before: the conductor of a character is the smallest defining
modulus of that character. Furthermore, for𝑚 a definingmodulus of 𝐿we denote the character
group of 𝐿 to be the set

𝑋𝐿,𝑚 = {𝜒 ∈ 𝐶𝑚 : 𝜒(ℎ) = 1 for all ℎ ∈ 𝐼𝐿,𝑚}.

This leads to the following:

Theorem 1.11. (Conductor-Discriminant Formula) Let𝑚 be a defining modulus of 𝐿. Then

𝑓𝐿 = lcm{𝑓𝜒 : 𝜒 ∈ 𝑋𝐿,𝑚}

and
|disc(𝐾) | =

∏
𝜒∈𝑋𝐿,𝑚

𝑓𝜒.

Example 1.12. Let 𝐿 = Q(
√
5, )

√
−3). We want to show |disc(𝐿) | = 52 · 32 and 𝑓𝐿 = 5 · 3. By

Theorem 1.4 we have 𝑓Q(
√
5) = 5 and 𝑓Q(

√
−3) = 3. The following diagram follows

Q

Q(
√
−3)

Q(
√
5,
√
−3)

Q(
√
5)

Q5 Q3

Q15

We know Gal(Q5/Q) � 𝐶5 and Gal(Q3/Q) � 𝐶3 which are both cyclic. Let 𝑎1 be the generator
of 𝐶5 and 𝑎2 be the generator of 𝐶3. Since Q15 = Q5 · Q3 we have

Gal(Q15/Q) � Gal(Q5/Q) × Gal(Q3/Q) = ⟨𝑎1⟩ × ⟨𝑎2⟩.

Defining characters on ⟨𝑎1⟩ × ⟨𝑎2⟩ comes down to realizing the order of both generators. We
want 𝜒1 and 𝜒2 to be characters (i.e. morphisms into C.) In order to do this, we need 𝑎1 to map
to an element with order 4 and 𝑎2 to map to an element with order 2. Thus, the options for a
generic character 𝜒 are

𝜒(𝑎1) = 1 or 𝑖,𝜒(𝑎2) = ±1.
So we define 𝜒1(𝑎1) = 𝑖,𝜒1(𝑎2) = 1 and 𝜒2(𝑎1) = 1,𝜒2(𝑎2) = −1 so that the character group of
𝐶15 is given by

⟨𝜒1⟩ × ⟨𝜒2⟩
Nowwe look into the relativeGalois groups. ConsideringQ3 = Q(

√
−3) thenGal(Q3/Q(

√
−3)) =

{1}. We also know Q5 is a degree 4 extension over Q. So Gal(Q5/Q(
√
5)) must be an index 2

subgroup since the two fields are not equal. We get Gal(Q5/Q(
√
5)) = ⟨𝑎21⟩. Putting everything

together we can compute the character group

𝑋𝐿,15 = ⟨𝜒21⟩ × ⟨𝜒2⟩.

To continue further in this example, we need a little extra machinery.

Proposition 1. The defining moduli of 𝜒 ∈ 𝐶𝑚 are precisely the multiples of 𝑓𝜒.
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We omit the proof for the sake of demonstrating this example. Since 5 is a defining modulus
for 𝜒21 then 𝑓𝜒1 = 1 or 5. But 1 is definitely not a defining modulus of 𝜒21 so it must be the case
that 𝑓𝜒1 = 5. Similarly, 3 is a defining modulus for 𝜒2 we get 𝑓𝜒2 = 3.
To find a modulus for 𝜒21𝜒2 we notice that

𝜒1(𝑎1)2 = −1 and 𝜒2(𝑎2) = −1.
Thus, the condition requiring such a 𝑐 where 𝑎 ≡ 1 mod 𝑐 implies 𝜒21𝜒2(𝑎) = 1 is equivalent
to 𝑐 ≡ 1 mod 5 and mod 3. By the Chinese Remainder Theorem, this is equivalent to 𝑐 ≡
1 mod 15. so 15 is a definingmodulus. By the previous proposition, 𝑓𝜒21𝜒2 = 1, 3, 5, 15.But by the
requirements above, one can reason that it must be 15. Thus, by the Conductor-Discriminant
Formula, |disc(𝐿) | = 1 · 3 · 5 · 15 = 32 · 52 and 𝑓𝐿 = 3 · 5. Notice the added 1 when computing
the discriminant. This takes into account the trivial character which sends everything to 1. This
completes the example.
Example 1.13. We will show that for 𝐿 = Q(

√
2,
√
5) we have |disc(𝐿) | = 1600 and 𝑓𝐿 = 40.

Theorem 1.14. (Decomposition Theorem) Let 𝑚 be a defining modulus of 𝐿. If 𝑝 ∤ 𝑚 then the
order of 𝑝𝐼𝐿,𝑚 in 𝐶𝑚/𝐼𝐿,𝑚 is 𝑓, the residue class degree of 𝑝.
This makes sense considering if 𝑝 ∤ 𝑚 then 𝑝 is unramified in 𝐿.Why is this so interesting?

Well if we let 𝑚 = 𝑓𝐿 and we know 𝑒𝑓𝑔 = 𝑛 = [𝐿 : Q] then we can make statements about
not only unramified primes but those which split completely in Galois extensions of Q. We
define Spl(𝐿) to be the set of all primes that split completely in 𝐿. Then 𝑝 ∈ Spl(𝐿) if and only
if 𝑝 ∤ 𝑓𝐿 and 𝑝 ∈ 𝐼𝐿,𝑓𝐿 which is equivalent to 𝑝 being congruent to integers mod 𝑓𝐿 which are
relatively prime. This is a finite set, so 𝑝 ∈ Spl(𝐿) can be given by a finite number of congruence
conditions.
Definition 1.15. If 𝑝 is an odd prime, 𝑎 ∈ Z, and 𝑝 ∤ 𝑎 the Legendre Symbol ( 𝑎𝑝 ) is given by(

𝑎

𝑝

)
=

{
1 if 𝑥2 ≡ 𝑎 mod 𝑝 has a solution
−1 if 𝑥2 ≡ 𝑎 mod 𝑝 has no solution.

and if 𝑏 is an odd positive integer where 𝑏 = 𝑝𝑒1
1 · · ·𝑝𝑒𝑔

𝑔 the Jacobi Symbol is given by(𝑎
𝑏

)
=

(
𝑎

𝑝1

)𝑒1
· · ·

(
𝑎

𝑝𝑔

)𝑒𝑔
.

In the coming section we will being to get a notion of this in the general case, for now, we
move back to the previous Example 1.12 to see how we can turn 𝑝 ∈ Spl(𝐿) into a set of con-
gruences.

Example 1.16. Let 𝐿 = Q(
√
5,
√
−3) as before. Then we have the isomorphism
Gal(Q15/Q) � ⟨𝑎1⟩ × ⟨𝑎2⟩

where 𝑎1, 𝑎2 are the generators for (Z/5Z)× and (Z/3Z)× respectively. If we pick explicit gener-
ators, say 3 mod 5 and 2 mod 3 Then

Gal(Q15/Q) � ⟨3 mod 5⟩ × ⟨2 mod 3⟩.
Using the Chinese Remainder Theorem, we arrive at the stunning result

Gal(Q15/𝐿) � ⟨32 mod 5⟩ × ⟨1 mod 3⟩
� ⟨4 mod 15⟩.

So primes that split completely in 𝐿 are EXACTLY those that are 4 or 1 mod 15.
Proof. See [1, p. 123]. □
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2. Global Class Field Theory

It is officially the time to begin generalizing the ideas overQ to an arbitrary ground field. We
immediately run into the problem that the Kroncker-Weber Theorem does not hold when the
ground field is not Q. To rectify this we will construct a field that holds all the "nice" properties
we want to hold from before. We first generalize a defining modulus.

Definition 2.1. When 𝜎 is a totally real embedding of 𝐾 into C we associate a formal symbol
𝔭𝜎 to denote a real infinite 𝐾−prime.

Definition 2.2. A modulus of 𝐾 (number field), denoted𝔪 is a formal product of an ideal in
O𝐾 and a set of real infinite primes 𝐾−primes. So

𝔪 = 𝔪0 · some infinite 𝐾 − primes.
where𝔪0 ⊂ O𝐾 .

Let 𝐴𝔪 be the set of all fractional ideals 𝔞 ∈ 𝐴 = 𝐴𝐾 such that unique factorization of 𝔞 and
𝔪 into 𝐾−primes contain no 𝐾−primes in common. In essence, we are demanding that 𝔞 and
𝔪 are relatively prime as fractional ideals in O𝐾 . To generalize the notion of congruence we
need to understand the set 𝐴𝔪.We start with the following Proposition.

Proposition 2. Let 𝐾∗ = 𝐾 − {0}. If 𝛼 ∈ 𝐾, let (𝛼) be the principal ideal 𝛼O𝐾 . If (𝛼) ∈ 𝐴𝔪 then
𝛼 = 𝑎

𝑏 where 𝑎 , 𝑏 ∈ O𝐾 AND (𝑎), (𝑏) ∈ 𝐴𝔪!

This result is not a triviality at all and the proof must be handled with some care.

Proof. □

With this Proposition, we can extend the notion of congruence to an arbitrary ground field.

Definition 2.3. Let (𝛼) ∈ 𝐴𝔪. Then 𝛼 ≡ 1 mod 𝔪means 𝑎 ≡ 𝑏 mod 𝔪0 where 𝛼 = 𝑎/𝑏 are as
above and 𝜎(𝛼) > 0 for each infinite 𝐾−prime 𝔭𝜎 occuring in𝔪.
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