CONSTRUCTION AND ANALYSIS OF THE MODULAR CURVE X(2)

DYLAN T. COSTA

1. CONSTRUCTION OF Yj(2)

In this section, we will construct the modular curve Y5(2) as a Riemann surface over C. Consider

the following action of the group SLy(Z) on the upper half plane H : given a v = <Ccl Z) € SLo(Z)

and 7 € H,
_ar+b
v(r) = cr+d
We define Y (1) as the quotient of the upper half plane modulo the equivalence relation imposed
by the above group action. That is,

Y (1) = H/SLy(2)

which is a Riemann surface but not compact. Consider the congruence subgroup

To(2) = {(i Z) € SLo(Z) | ¢ = 0 mod 2} .

We define Yy(2) as the further quotient
Yo(2) = H/To(2)

which, once again, is a Riemann surface but not compact.

2. FINDING FUNDAMENTAL DOMAIN

The fundamental domain of this surface can be found using the fundamental domain for Y (1). If
we let F be the fundamental domain of Y'(1). That is,

].':{TGH;|Re(7‘)|<;}Q{TEH:|T|21}.

Finding coset representatives for SLa(Z)/T'o(2) will show what points in H are no longer equivalent
(since we are considering the action of a proper subgroup of SLg(Z) on H.) The matrices S =

0 -1 and T = 1 1) , generate SLo(Z). So a possible list of coset representatives for the

1 0 01
quotient SLy(Z)/T'0(2) are
10 0 -1 0 -1
{690 )0 )
The fundamental domain should be the action of these three coset representatives on F. Put
explicitly, the set

D = FUS(F) U (ST)(F)
1
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is the fundamental domain for I'y(2). For some intuition behind this, notice that T € I'y(2), so any
point T € H can be shift to a point in H with [Re(7)|< 3.

3. CONSTRUCTION OF X(2)

To compactify the modular curve Yp(2) = H/T(2), we let H* = HU Q U {oco} and define the
extended quotient

Xo(2) = H"/To(2).

Now we want to show that this extended quotient is a compact Riemann surface. To do this, we will
need to find the cusps of X((2). These correspond to all the I'g(2)-equivalence classes of Q U {oo}.
We can generalize the definition above to primes p as

Xo(p) = H"/To(p)-
Proposition 3.1. Let p be a prime. The modular curve Xo(p) has only two cusps.

Proof. As previously stated, the cusps on the modular curve Xo(p) correspond to I'g(p)-equivalence
classes of Q U {oo}. To show that Xy(p) has at least two cusps, we will show that 0 and oo can not

b) € SLy(Z). This matrix acts

. . . . (a
be in the same equivalence class as each other. Given a matrix (c d

(¢ D)ot

If oo was in the same I'g(p)-equivalence class as 0 then we would need a matrix with a = 0. But
this is an immediate contradiction. If @ = 0 then ¢ # 0. Moreover, for the determinant of such a
matrix to be 1, we would need ¢ € {£1}. It follows that such a matrix can never be in the group
[o(p), which proves the claim. So Xy(p) has at least two cusps, but we want to show there are no
more extra cusps. To prove this, we need to show that every rational number is equivalent to 0 or
oo under the action of I'g(p).

on the point co as

Note that the matrix € I'y(p) for all primes p. This sends an element 7 to 7+ n. It suffices

1 n
(0]
to consider rational number between 0 and 1 in reduced form (that is, ”* where (m,n) = 1.) Suppose
p divides m. Then p does not divide n and there exists x,y € Z such that pmx + ny = 1. Consider

—m) € I'p(p). Then

Yy
(n —m><m>_n’;’f—m
pr oy n/  pzZ4y
m—m

pr +y
mn —mn

the matrix

N prm + ny
=0.
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Suppose instead, p divides n meaning p does not divide m. Once again there are x,y € Z such that

—maz — ny = 1. We can take the matrix (i _y ) € I'p(p) and see

m
r oy <m> x4y
n —m n - nm —m
n
_ mz+ny
 mn—mn
-1
= — =o0.
0
The final case to consider is when p does not divide m or n. Then there exists x,y € Z such that

—m

pmx +ny = 1. Consider the matrix <pT; € I'o(p). We use the same calculation as in the first

(pgc _z;n> (%) =0

So all rational number are I'g(p) equivalent to either 0 or oco. Thus, the modular curve Xo(p) has
exactly two cusps for all primes p. O

case to conclude

This modular curve is a compact Riemann surface that parameterizes elliptic curves having a 2-
isogeny. How do we arrive at such a claim? Consider the usual topology on H. Since these curves are
defined as a quotient of H*, we want a nice way to extend the topology on H. Define the neighborhood

Ny ={r € H:Im(r) > M}
for any M > 0. Now adjoin the usual open sets in H with the sets
a({NptU{oo}): M >0, a € SL(Z)

to be the neighborhoods of the cusps. We let this be the topology of H. Note that under this topology,
each element in SLo(Z) acts as a homeomorphism of H*. We give X(2) the quotient topology. Now
we want to show that X(2) is compact. To do this, we will prove the following lemma:

Lemma 3.2. The set F* = F U{oo} is compact in the H* topology.

Proof. Take an open cover {U,} of F*. For some o, the set U,,, contains co. Notice that U,
must be some Nj; for M > 0. The area remaining is the set

{re F:Im(r) < M}

which is a compact set covered by |, £ ao1Ua}- Since this resulting set is compact, there is a finite

subcover {V;}¥,. Letting Vi = U,._, the finite collection of open sets {V;}¥, is a finite subcover of
JF* demonstrating compactness of F* in the H* topology. O

Proposition 3.3. The modular curve Xo(2) is compact.
Proof. By we know F* is compact in the H* topology. Moreover,
H* = SLo(Z)(F™).
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We computed earlier, I'g(2) is an index 3 subgroup of SLa(Z). Let {v;}?_; be the collection of coset
representatives computed previously, then

H* = SLy(Z)(F")

= U Lo(2)7i(F).

Then Xo(2) = 7(H*) = >, n(7:(F*)) where 7 is the quotient map. Note that 7 is continuous and

every ; is continuous and there are only finitely many ~; to consider since I'g(2) is a finite index
subgroup. The continuous image of a compact set is compact which completes the proof. O

More generally, one can show that the more general quotient Xo(N) = H*/T'g(V) is a connected,
compact, Hausdorff Riemann surface for all N € Z (see [I].) If we want to know the genus of X(2),
we use the following theorem:

Theorem 3.4 ([I], 3.1.1). Let T" be a congruence subgroup of SLa(Z). Let f : X(I') — X (1) be the
natural projection, and let d denote its degree. Let €2 and €3 denote the number of elliptic points of
period 2 and 3 in X ('), and ex, the number of cusps of X(I'). Then the genus of X(I") is

9= T "4 "3 o

For the curve X(2), there are 2 cusps, 1 elliptic point of period 2 and d = 3. So the genus of
Xo(2) is 0. Since we have two points on the surface (those being the cusps), it must be isomorphic
to PL. In the next section, we will show that X(2) can be visualized as a curve over P'(Q)

4. ANALYSIS OF RATIONAL POINTS ON X((2)

In this section, we will find a model for X((2) and see what possible j-invariants correspond to
elliptic curves with a 2-isogeny. For this, we will look into the function field C(Xy(N)).
Proposition 4.1 ([1I], 7.5.1). The fields of meromorphic functions on Xo(N) are C(4,jn). Where
JN(T) = J(NT).

To find a model for X((2) we will look into the function field at the relationship between j and
jn. This relationship is given by the modular polynomial.

Definition 4.2 ([3]). The modular polynomial ®x is the minimal polynomial of jn over C(j) =
C(X(1)). We may write it as

T

en(Y) = [[(¥ —jn(ym)
where {y1,...,v} is a set of right coset represle_;tatives for To(N) in T'o(1).
Letting X = j2,Y = j, the modular polynomial for I'g(2) is
Dy(X,Y) = X3 4 48X? — XY 4 768X + 4096.
This means the function field C(X((2)) can be seen as the quotient
C(Xo(2)) = C(j,j2) = C[X, Y]/®(X,Y).
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Rational points (X,Y") that are solutions to ®2(X,Y) = 0 correspond to the j-invariant of elliptic
curves that have a 2-isogeny defined over Q. We solve for Y in the above equation
X3 +48X2 + 768X + 4096
X

which is a rational map to P! with a simple pole at X = 0. For any X # 0, the corresponding Y
value is a possible j-invariant. For example, the point (—6, —500/3) is a point on ®9(X,Y) = 0. One
possible elliptic curve E with j(E) = —500/3 is
E:y? =% — 2% — 48z — 420
with E(Q)tors = Z/2Z and LMFDB label 20184.f2 ([2]). The torsion subgroup of E is generated by
the point (10,0). Since E has a 2-torsion point defined over Q, it necessarily also has a 2 -isogeny
defined over Q. Let E' with LMFDB label 20184.f1 have model
E':y? = 2% — 22 — 1208z — 15732.

Then there exists an isogeny ¢ : E — E’ of degree 2 given by the map

() 22+ 92 + 42 2%y — 202y — 132y

€T =
Y z—10 ' 22— 20z + 100

In general, the curve X(2) is the same as the curve X;(2) since every elliptic curve defined over

a number field K has a 2-isogeny defined over K if and only if it has a point of order 2 defined over
K.

Y =
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