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1. Construction of Y0(2)

In this section, we will construct the modular curve Y0(2) as a Riemann surface over C. Consider

the following action of the group SL2(Z) on the upper half plane H : given a γ =

(
a b
c d

)
∈ SL2(Z)

and τ ∈ H,

γ(τ) =
aτ + b

cτ + d
.

We define Y (1) as the quotient of the upper half plane modulo the equivalence relation imposed
by the above group action. That is,

Y (1) = H/SL2(Z)
which is a Riemann surface but not compact. Consider the congruence subgroup

Γ0(2) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod 2

}
.

We define Y0(2) as the further quotient

Y0(2) = H/Γ0(2)

which, once again, is a Riemann surface but not compact.

2. Finding Fundamental Domain

The fundamental domain of this surface can be found using the fundamental domain for Y (1). If
we let F be the fundamental domain of Y (1). That is,

F =

{
τ ∈ H : |Re(τ)|< 1

2

}
∩ {τ ∈ H : |τ |≥ 1}.

Finding coset representatives for SL2(Z)/Γ0(2) will show what points in H are no longer equivalent
(since we are considering the action of a proper subgroup of SL2(Z) on H.) The matrices S =(
0 −1
1 0

)
and T =

(
1 1
0 1

)
, generate SL2(Z). So a possible list of coset representatives for the

quotient SL2(Z)/Γ0(2) are {(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
0 −1
1 1

)}
.

The fundamental domain should be the action of these three coset representatives on F . Put
explicitly, the set

D = F ∪ S(F) ∪ (ST )(F)
1
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is the fundamental domain for Γ0(2). For some intuition behind this, notice that T ∈ Γ0(2), so any
point τ ∈ H can be shift to a point in H with |Re(τ)|≤ 1

2 .

3. Construction of X0(2)

To compactify the modular curve Y0(2) = H/Γ0(2), we let H∗ = H ∪ Q ∪ {∞} and define the
extended quotient

X0(2) = H∗/Γ0(2).

Now we want to show that this extended quotient is a compact Riemann surface. To do this, we will
need to find the cusps of X0(2). These correspond to all the Γ0(2)-equivalence classes of Q ∪ {∞}.
We can generalize the definition above to primes p as

X0(p) = H∗/Γ0(p).

Proposition 3.1. Let p be a prime. The modular curve X0(p) has only two cusps.

Proof. As previously stated, the cusps on the modular curve X0(p) correspond to Γ0(p)-equivalence
classes of Q ∪ {∞}. To show that X0(p) has at least two cusps, we will show that 0 and ∞ can not

be in the same equivalence class as each other. Given a matrix
(
a b
c d

)
∈ SL2(Z). This matrix acts

on the point ∞ as (
a b
c d

)
(∞) =

a

c
.

If ∞ was in the same Γ0(p)-equivalence class as 0 then we would need a matrix with a = 0. But
this is an immediate contradiction. If a = 0 then c ̸= 0. Moreover, for the determinant of such a
matrix to be 1, we would need c ∈ {±1}. It follows that such a matrix can never be in the group
Γ0(p), which proves the claim. So X0(p) has at least two cusps, but we want to show there are no
more extra cusps. To prove this, we need to show that every rational number is equivalent to 0 or
∞ under the action of Γ0(p).

Note that the matrix
(
1 n
0 1

)
∈ Γ0(p) for all primes p. This sends an element τ to τ+n. It suffices

to consider rational number between 0 and 1 in reduced form (that is, m
n where (m,n) = 1.) Suppose

p divides m. Then p does not divide n and there exists x, y ∈ Z such that pmx+ ny = 1. Consider

the matrix
(
n −m
px y

)
∈ Γ0(p). Then

(
n −m
px y

)(m
n

)
=

nm
n −m

pxm
n + y

=
m−m

pxm
n + y

=
mn−mn

pxm+ ny

= 0.
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Suppose instead, p divides n meaning p does not divide m. Once again there are x, y ∈ Z such that

−mx− ny = 1. We can take the matrix
(
x y
n −m

)
∈ Γ0(p) and see(

x y
n −m

)(m
n

)
=

xm
n + y

nm
n −m

=
mx+ ny

mn−mn

=
−1

0
= ∞.

The final case to consider is when p does not divide m or n. Then there exists x, y ∈ Z such that

pmx+ ny = 1. Consider the matrix
(
n −m
px y

)
∈ Γ0(p). We use the same calculation as in the first

case to conclude (
n −m
px y

)(m
n

)
= 0.

So all rational number are Γ0(p) equivalent to either 0 or ∞. Thus, the modular curve X0(p) has
exactly two cusps for all primes p. □

This modular curve is a compact Riemann surface that parameterizes elliptic curves having a 2-
isogeny. How do we arrive at such a claim? Consider the usual topology on H. Since these curves are
defined as a quotient of H∗, we want a nice way to extend the topology on H. Define the neighborhood

NM = {τ ∈ H : Im(τ) > M}

for any M > 0. Now adjoin the usual open sets in H with the sets

α({NM} ∪ {∞}) : M > 0, α ∈ SL2(Z)

to be the neighborhoods of the cusps. We let this be the topology of H. Note that under this topology,
each element in SL2(Z) acts as a homeomorphism of H∗. We give X0(2) the quotient topology. Now
we want to show that X0(2) is compact. To do this, we will prove the following lemma:

Lemma 3.2. The set F∗ = F ∪ {∞} is compact in the H∗ topology.

Proof. Take an open cover {Uα} of F∗. For some α∞, the set Uα∞ contains ∞. Notice that Uα∞

must be some NM for M > 0. The area remaining is the set

{τ ∈ F : Im(τ) ≤ M}

which is a compact set covered by
⋃

α̸=α∞
{Uα}. Since this resulting set is compact, there is a finite

subcover {Vi}Ni=1. Letting V0 = Uα∞ , the finite collection of open sets {Vi}Ni=1 is a finite subcover of
F∗ demonstrating compactness of F∗ in the H∗ topology. □

Proposition 3.3. The modular curve X0(2) is compact.

Proof. By 3.2, we know F∗ is compact in the H∗ topology. Moreover,

H∗ = SL2(Z)(F∗).
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We computed earlier, Γ0(2) is an index 3 subgroup of SL2(Z). Let {γi}3i=1 be the collection of coset
representatives computed previously, then

H∗ = SL2(Z)(F∗)

=
3⋃

i=1

Γ0(2)γi(F∗).

Then X0(2) = π(H∗) =
⋃3

i=1 π(γi(F∗)) where π is the quotient map. Note that π is continuous and
every γi is continuous and there are only finitely many γi to consider since Γ0(2) is a finite index
subgroup. The continuous image of a compact set is compact which completes the proof. □

More generally, one can show that the more general quotient X0(N) = H∗/Γ0(N) is a connected,
compact, Hausdorff Riemann surface for all N ∈ Z (see [1].) If we want to know the genus of X0(2),
we use the following theorem:

Theorem 3.4 ([1], 3.1.1). Let Γ be a congruence subgroup of SL2(Z). Let f : X(Γ) → X(1) be the
natural projection, and let d denote its degree. Let ϵ2 and ϵ3 denote the number of elliptic points of
period 2 and 3 in X(Γ), and ϵ∞ the number of cusps of X(Γ). Then the genus of X(Γ) is

g = 1 +
d

12
− ϵ2

4
− ϵ3

3
− ϵ∞

2
.

For the curve X0(2), there are 2 cusps, 1 elliptic point of period 2 and d = 3. So the genus of
X0(2) is 0. Since we have two points on the surface (those being the cusps), it must be isomorphic
to P1. In the next section, we will show that X0(2) can be visualized as a curve over P1(Q)

4. Analysis of Rational Points on X0(2)

In this section, we will find a model for X0(2) and see what possible j-invariants correspond to
elliptic curves with a 2-isogeny. For this, we will look into the function field C(X0(N)).

Proposition 4.1 ([1], 7.5.1). The fields of meromorphic functions on X0(N) are C(j, jN ). Where
jN (τ) = j(Nτ).

To find a model for X0(2) we will look into the function field at the relationship between j and
jN . This relationship is given by the modular polynomial.

Definition 4.2 ([3]). The modular polynomial ΦN is the minimal polynomial of jN over C(j) =
C(X(1)). We may write it as

ΦN (Y ) =

r∏
i=1

(Y − jN (γiτ))

where {γ1, . . . , γr} is a set of right coset representatives for Γ0(N) in Γ0(1).

Letting X = j2, Y = j, the modular polynomial for Γ0(2) is

Φ2(X,Y ) = X3 + 48X2 −XY + 768X + 4096.

This means the function field C(X0(2)) can be seen as the quotient

C(X0(2)) = C(j, j2) ∼= C[X,Y ]/Φ(X,Y ).
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Rational points (X,Y ) that are solutions to Φ2(X,Y ) = 0 correspond to the j-invariant of elliptic
curves that have a 2-isogeny defined over Q. We solve for Y in the above equation

Y =
X3 + 48X2 + 768X + 4096

X

which is a rational map to P1 with a simple pole at X = 0. For any X ̸= 0, the corresponding Y
value is a possible j-invariant. For example, the point (−6,−500/3) is a point on Φ2(X,Y ) = 0. One
possible elliptic curve E with j(E) = −500/3 is

E : y2 = x3 − x2 − 48x− 420

with E(Q)tors ∼= Z/2Z and LMFDB label 20184.f2 ([2]). The torsion subgroup of E is generated by
the point (10, 0). Since E has a 2-torsion point defined over Q, it necessarily also has a 2 -isogeny
defined over Q. Let E′ with LMFDB label 20184.f1 have model

E′ : y2 = x3 − x2 − 1208x− 15732.

Then there exists an isogeny ϕ : E → E′ of degree 2 given by the map

ϕ(x, y) =

(
x2 + 9x+ 42

x− 10
,
x2y − 20xy − 132y

x2 − 20x+ 100

)
.

In general, the curve X0(2) is the same as the curve X1(2) since every elliptic curve defined over
a number field K has a 2-isogeny defined over K if and only if it has a point of order 2 defined over
K.
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