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3 Dimension Formulas

3.2 Motivation

Before we look into differentials and Riemann-Roch to see their applications to Modular forms,
let us take a look into why we are so motivated to use them. Consider a function f which is an

automorphic of weight k. Then we know for τ ∈ H and γ =

(
a b
c d

)
∈ Γ

f(γ(τ)) = j(γ, τ)kf(τ) = (cτ + d)kf(τ). (1)

Where Γ is any congruence subgroup of SL2(Z). Although there is no discussion in the text, some
equations throughout this chapter can be relaxed to the assumption that Γ is only a finite index
subgroup. For our purposes, we will stick with the stricter condition. Previously mentioned in
Section 1.1 of the text, d(γ(τ)) = (cτ +d)−2dτ. A natural result arises for f being any automorphic
form of weight k/2 where k is a positive, even integer

f(γ(τ))(dγ(τ))k/2 = j(γ, τ)kf(τ)(j(γ, τ)−2(dτ)k/2

= j(γ, τ)kf(τ)j(γ, τ)−k(dτ)k/2

= f(τ)(dτ)k/2.

Demonstrating f(τ)(dτ)k/2 is in fact Γ−invariant. It is the goal of this section to show that the
automorphic forms of even weight have a natural C−vector space isomorphism with meromorphic
differentials of half the weight. Thus, the need to understand these differentials and the use of
theorems in geometry such as Riemann-Roch is, in essence, to help understand the subspaces of
automorphic forms (which would include the space of modular forms).

3.3 Meromorphic Differentials

We begin with a definition of the main topic of this section

Definition 1. Let V ⊂ C be open and n ∈ N. The meromorphic differentials on V of degree n are

Ω⊗n(V ) = {f(q)(dq)n : f meromorphic on V, q is the variable on V }.

A seemingly obvious yet important remark is that one must keep track of which coordinate system
they work in while considering meromorphic differentials. We will be looking into Riemann Surfaces
which have local charts. We immediately notice that Ω⊗n(V ) forms a C−vector space under the
usual operations

f(q)(dq)n + g(q)(dq)n = (f + g)(q)(dq)n and cf(q)(dq)n = (cf)(q)(dq)n for c ∈ C.



If we consider the space of meromorphic differentials on V denoted Ω(V ) =
⊕

n∈NΩ⊗n(V ) and add
the operation (dq)n(dq)m = (dq)n+m we get a ring structure.

Notice the initial definition is only defined locally (for open sets). We would like to figure out a
way to construct a globally defined meromorphic differential for a Riemann Surface X. to do this,
we need to patch together local meromorphic differentials, meaning we need to see what happens
with transition maps.

Remark 1. Every holomorphic function φ : V1 → V2 between two open subsets of C induces a
pullback map φ∗ : Ω⊗n(V2) → Ω⊗n(V1) defined by

φ∗(f(q2)(dq2)
n) = f(φ(q1))φ

′(q1)(dq1)
n. (2)

Some important properties of the pullback that can be verified straight from the definition are the
following:

Proposition 1. Let φ1 : V1 → V2 and φ2 : V2 → V3 be two holomorphic maps between open sets
V1, V2, V3. Then (φ2 ◦ φ1)

∗ = φ∗
1 ◦ φ∗

2.

Proof. Notice that φ2 ◦ φ1 is a holomorphic map from V1 to V3. by the definition of the pullback,
for f(q3)(dq3)

n ∈ Ω⊗n(V ) we have

(φ2 ◦ φ1)
∗(f(q3)(dq3)

n) = f(φ2(φ1(q1)))(φ2 ◦ φ1)
′(q1)

n(dq1)
n

= f(φ2(φ1(q1)))(φ
′
2(φ1(q1))φ

′
1(q1))

n(dq1)
n

= φ∗
1(fφ2(q2)(dq2)

n)

= φ∗
1(φ

∗
2(f(q3)(dq3)

n)).

Two ideas used in the proof: a meromorphic function composed with a holomorphic function is
meromorphic and chain rule for complex holomorphic functions. There are a few other properties
that come straight from the definition.

Proposition 2. If V1 ⊂ V2 and i : V1 → V2 is the inclusion map then i∗(ω) = ω|V1 for all
ω ∈ Ω⊗n(V2).

Proposition 3. If φ is a holomorphic bijection then (φ−1)∗ = (φ∗)−1

Proposition 4. If π is a holomorphic surjection, then π∗ is injective.

Recall from complex analysis that any holomorphic bijection has a holomorphic inverse function.
Equipped with these tools, we can define a global meromorphic differential for a general Riemann
Surface.
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Definition 2. Let X be a Riemann Surface with charts φj : Uj → Vj with Uj ⊂ X,Vj ⊂ C, j ∈ J
for some indexing set J. A meromorphic differential on X of degree n is a collection of local
meromorphic differentials of degree n

(ωj)j∈J =
∏
j∈J

Ω⊗n(Vj)

that is compatible. That is, let Vj,k = φj(Uj ∩ Uk) and φk(Uj ∩ Uk) then the transition map
φk,j : Vj,k → Vk,j induces the relationship

φ∗
k,j(ωk|Vk,j ) = ωj |Vj,k .

At first glance, this definition can seem quite daunting. Let’s work through an example to see how
to apply such a definition.

Example 1. Take a complex tori (which can be identified with a complex elliptic curve) C/Λ
where Λ is a Z−lattice in C. We have the natural projection π : C → C/Λ and we define the charts
on the torus {Uj , φj}j∈J to be the local homeomorphic inverse to the natural projection. One can
reason through the fact that any transition map must be of the form z 7→ z + λ where λ ∈ Λ.
Geometrically, we have the following diagram

Using the definition above, we notice Vj,k and Vk,j are identified as the same set mod Λ. Thus, for
a collection of local meromorphic differentials ω = (dzj)j∈J we have

φ∗
k,j((dzk)

n) = φ′
k,j(zj)

n(dzj)
n = (dzj)

n

since the derivative of any transition map will be 1. Thus, we have a globally defined meromorphic
differential dz on the torus.

Much like local meromorphic differentials, the set Ω⊗n(X) of meromorphic differentials of degree n
on X has a C−vector space structure and

Ω(X) =
⊕
n∈N

Ω⊗n(X)

forms a ring.

Now consider the modular spaceX(Γ) = Γ\H∗.We want to make sense of meromorphic differentials
which are globally defined in this space. Once again consider the natural projection map π : X →
X(Γ). A question one could consider is what is the pullback map? Is this map a natural pullback?
It is discussed in Chapter 2 the construction of charts for the space X(Γ) which are {π(Uj), φj}j∈J
where Uj is a neighborhood of either τ ∈ H or a cusp sj ∈ Q ∪ {∞} and the local coordinate map
φj : π(Uj) → Vj ⊂ C has the property that the function ψ : Uj → Vj is the composite φj ◦ π. So ψ
is defined as the identifying action of π but then maps out to C.

Let (ωj)j∈J ∈ Ω⊗n(X(Γ)), U ′
j = Uj ∩ H and V ′

j = ψ(Uj) and ω′
j = wj |V ′

j
. Then the pullback map

π∗ is locally defined as
π∗(ω)|U ′

j
= ψ(ω′

j)for allj ∈ J.
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Note that this definition only gives us what the pullback map is locally defined to be. However,
with a little more work, we can show this construction can give a globally defined meromorphic
differential on X(Γ). Consider the commutative diagram

Uj ∩ Uk

Vj,k π(Uj ∩ Uk) Vk,j

ψkπ
ψj

φj

φk

The transition map φk,j : Vj,k → Vk,j is defined by

φk,j = (φk ◦ φ−1
j )|Vj,k

and
φk,j ◦ ψj = ψk on Uj ∩ Uk.

If we let V ′
j,k = ψj(U

′
j ∩ U ′

k) and Vk,j = ψk(U
′
j ∩ U ′

k) then

π∗(ω)|Uj∩Uk
= ψ∗

k(ωk|Vj,k) = ψ∗
j (π

∗(ωk|V ′
k,j
)) = ψ∗

j (ωj |Vj,k)

by compatibility since (ωj)j∈J ∈ Ω(X(Γ)). The pullbacks have a common f(τ)(dτ)n|U ′
j∩U ′

k
factor

in them so the pullback
π∗(ω) = f(τ)(dτ)n is well defined.

Moreover, since this f(τ)(dτ)n comes from a Γ−invariant space, then f itself must be Γ−invariant.
That is,

f(τ)(dτ)n = f(γ(τ))(dγ(τ))n

= f(γ(τ))(γ′(τ)n)(dτ)n

= f(γ(τ))(j(γ, τ)−2n(dτ)n

= (f [γ]2n)(τ)(dτ)
n

demonstrating that f is weakly modular of weight 2n. We want to see if f is an automorphic form
of weight 2n. For this we need to check that f is meromorphic at ∞. Let α ∈ SL2(Z) and s = ∞).

The local map (as seen in Chapter 2) can be expressed as ψ = ρ ◦ δ for ρ = e
2πiδ(τ)

h where h is the
width of s and δ is the transformation which sends s to ∞. Clearly, δ = α−1 by how we defined s
and using the additional fact that ω is meromorphic at ∞ we see ω|V takes the form g(q)(dq)n for
some g which is meromorphic at 0. We will construct f on the set U − {s} by

ψ(ω|V−{0}) = δ∗ρ∗(g(q)(dq)n)

= δ∗(g(ρ(z))ρ′(z)n(dz)n)

= g(ρ(δ(τ)))ρ′(δ(τ))nδ′(τ)n(dτ)n

= g
(
e

2πiδ(τ)
h

)(
2πi

h
e

2πiδ(τ)
h

)n
j(δ, τ)−2n(dτ)n.

Letting q = e
2πiδ(τ)

h then ψ(ω|V−{0}) = g(q)qn
(
2πi
h

)n
[δ]2n. Thus, we verify f is meromorphic at ∞

since

f = f̃ [δ]2n where f̃ = g(q)qn
(
2πi

h

)n
.
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A natural question to ask after this calculation is how can we reverse it. That is, can we create an
invertible mapping between the space of Automorphic forms of even weight and the meromorphic
differentials on X(Γ) of half the degree. To do this, we need to use the following remark and
proposition

Remark 2. Every meromorphic differential ω of degree n on X(Γ) pulls back to π∗(ω) = f(τ)(dτ)n

which is a meromorphic differential on the upper half plane and f is an automorphic form of weight
2n with respect to Γ.

Proposition 5. A collection (ωj)j∈J of local meromorphic differentials is compatible if and only
if its local elements pull back to a restriction of some f(τ)(dτ)n ∈ Ω⊗n(H) with f ∈ A2n(Γ).

Thus, in order to reverse the calculation and create a desired isomorphism between automorphic
forms and meromorphic differentials the goal is to take f ∈ A2n(Γ) and construct a meromorphic
differential ω(f) ∈ Ω⊗n(X(Γ)) such that π∗(ω) = f(τ)(dτ)n. The previous proposition allows us to
simply construct local differentials that will pull back to restrictions on f(τ)(dτ)n. Earlier in the
section (and in chapter 2) we looked at the charts as the composite map ψj = ρj ◦ δj which moves
from τ space to z space and finally to q space. We defined δj to be in GL2(C) so we move from τ
space to z space with ease knowing δj is an invertible linear transformation. Define

(f [γ]k)(τ) = (det(γ))k/2j(γ, τ)−kf(γ(τ)) where j(γ, τ) = cτ + d

as before but now extending the definition for all matrices in GL2(C). Equipped with these new
definitions we look at the set U ′

j = Uj ∩H and notice that f(τ)(dτ)n is the pullback of λj where λj

is the pull forward of f(τ)(dτ)n using the inverse matrix δ−1
j . A remark about this calculation is

that λj is δjΓδ
−1
j invariant coming form f(τ)(dτ)n. Pushing into q-space needs to be treated with

care since ρ is not necessarily always inveritble. Fulton and Harris split into two cases: dealing with
only sets in the upper half plane and when you have a cusp. The difference comes when looking
at the local forms of each ψj in each case. Everything follows quite naturally from the definitions
which we established in chapter 2. This calculation on page 81 in the text gives us a ωj which
locally pulls back to f(τ)(dτ)n. We invoke the previous proposition to get the main theorem for
this section

Theorem 1. Let k ∈ N be even and let Γ be a congruence subgroup of SL2(Z). The map

ω : A2k(Γ) → Ω⊗k/2(X(Γ))

sending f to (ωj)j∈J is an isomorphism of complex vector spaces.

Of course this (ωj) collection is the one constructed before that pulls back to f(τ)(dτ)n ∈ Ω⊗k/2(H).
An immediate corollary of this (which will be used in the next section for a calculation) is the
following

Corollary 1. Let k ∈ N be positive and even, then Ak(Γ) takes the form C(X(Γ))f where C(X(Γ)
denotes the field of meromorphic functions on X(Γ) and f is any nonzero element of Ak(Γ). More-
over, by the isomorphism above, Ω⊗k/2(X(Γ)) = C(X(Γ))ω(f) for such k.

To end the section, there are remarks on the vanishing order for ω and an explicit formula is given.
For the purposes of what we expect to use meromorphic differentials for (and in the context of the
next section), it is of less importance than the theorem above. Thus, we conclude the initial study
of these meromorphic differentials.
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3.4 Divisors and Riemann-Roch

The previous section seems of little use to studying modular forms. However, one must realize that
the isomorphism create between spaces of automorphic forms and meromorphic differentials now
leads to analyzing the subspaces Mk(Γ) and even Sk(Γ) as subspaces of meromorphic differentials.
Now we use theorems of complex geometry in order to conclude some characteristics of these spaces.
To do this we introduce the following definitions:

Definition 3. A divisor on X is a formal sum on the points of X,

D =
∑
x∈X

nx · x, nx ∈ Z

where all but finitely many nx = 0.

In this definition and for the rest of this section, we assume that X is a compact Riemann surface.
Although in the context of looking into modular forms, we might imagine dealing with X(Γ) for
some congruence subgroup Γ of SL2(Z). Some trivial examples of divisors are D = p,D = p+q,D =
2p− q for p, q ∈ X where p ̸= q.

One can notice immediately that the set Div(X) which are the divisors of X form the free abelian
group on the points of X. That is, for divisors D =

∑
x∈X nx · x and D′ =

∑
x∈X n

′
x · x we have

D +D′ =
∑
x∈X

(nx + n′x) · x.

For convention purposes, we say D ≥ D′ if nx ≥ n′x for all x ∈ X.

Definition 4. The degree of a divisor is defined as deg(D) =
∑
nx

Using one of the examples above, for p, q ∈ X and p ̸= q we have D = p + q being a divisor of
degree 2. The divisor D = p has degree 1. It can be shown that the map D 7→ deg(D) is a group
homomorphism from Div(X) to Z.

We associate each meromorphic function on X a divisor defined by the order of vanishing at each
point. Let f ∈ C(X)∗, we call

div(f) =
∑
x∈X

νx(f) · f

the principal divisor of f. This creates yet another morphism from the field of meromorphic func-
tions on X to Div(X). We have the following proposition that comes from complex anlaysis to aid
us in the study of divisors.

Proposition 6. For every f ∈ C(X)∗, div(f) = 0.

Proof.
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